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LAPD is Ideal for Collisional Plasma Fluid Model 

Machine and plasma size:

Plasma column length » 18 m

Plasma radius » 30 cm

Typical LAPD operational parameters:

0:4 < B0 < 2 kG

1011 < ne < 4£ 1012 cm¡3

0:5 < Te < 8 eV

0:5 < Ti < 1:5 eV

fci » 400 KHz

¹in » 2 KHz

¹ei » 5 MHz
!
kk
· vthe

¸ei=Lk » 0:01

¹i=!ci » 1

k?½i » 0:1
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LAPD Model: Three Field Drift Wave Model (lapd-drift)

Instabilities Supported with these Equations
• Resistive drift waves
• Kelvin-Helmholtz
• Rotational Interchange

Three-field electrostatic model implemented
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BOUT++ Equations Solved
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Geometry and Boundary Conditions Used in 
Standard LAPD Simulation
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Geometry in Simulation is Cylindrical Annulus

• Periodic axial boundaries

• Zero-derivative (Neumann) radial boundaries

• Radial potential b.c. used in vorticity inversion:

Inner radial boundary:

Outer radial boundary:

@ÁDC

@r
= ÁAC = 0

ÁDC =
@ÁAC

@r
= 0

Grid file created using IDL program 
written by M.V. Umansky and P. Popovich
input into modified UEDGE grid generator

x! r

y! z (poloidal)

z ! µ (toroidal, periodic)
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Linear Instability Analysis Done with Eigenvalue Solver*

Fields N; vke; Á Fourier decomposed: F (r; µ; z; t) = f(r)exp(imµ + ikzz ¡ i!t)

Generalized eigenvalue problem: ¡ i!Av = Bv; v =

0

@
n(r)

vke(r)

Á(r)

1

A

• Drift waves, KH, Interchange 
instabilities explored with 
different equilibrium profiles and 
parallel wave numbers.

• Linear growth rates for most 
unstable eigenvalue shown.

* P Popovich, B Friedman. Open source python code on google codes. Called Braginskii eigsolver
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BOUT++ First Verified Against Eigenvalue Solver

Drift wave dispersion relation and growth 
rates for fastest growing radial eigenmode
(curves) vs BOUT++ (dots) result. LAPD 
experimental density profile.

KH test case potential profile with 
both branches of analytic solution 
(curves) vs BOUT++ result.

*Linear analysis and BOUT verification:           
P. Popovich, M.V. Umansky, T.A. Carter,           
B. Friedman (2010)
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Profiles Used in Simulation Compared to Experiment

• Density equilibrium profile fit to experiment.
• Density source used to keep average density 
equal to equilibrium – subtracts m=0 density 
fluctuation component.

• Te = 5eV   constant profile
• Ti = 0eV
• No temperature fluctuations.

• Zero mean potential profile.
• Zonal flows evolved.
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Density Profile Control Either Through Time Independent 
Source or Time Dependent Suppression of m=0

No source results in transport 
induced profile relaxation

Time independent source partially 
controls finite m=0 fluctuation

• Option 1: subtraction of m=0 density fluctuation at each time step.
• Option 2: evolve a source using the zonal density component. Integral part of PID source.
• Option 3: use the derived time averaged source from options 1 or 2 and use it as a time 
independent source. Shown in plot.

• No significant differences between the options except in the m=0 density fluctuation.



Nonlinear BOUT++ Simulations Grow by Linear Drift Wave 
Instability and Saturate by Nonlinear Interactions

Most Unstable Linear Mode

Non-Linear Saturated Turbulence
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BOUT++ and LAPD Experimental Fluctuation Spectra Both 
Exponential at high Frequency but Have Different Slopes. 

PDFs Show Similar Non-Gaussian Features

Exponential spectra caused by Lorentzian-shaped temporal pulses where the width of the pulses 
sets the slope of the spectrum (D.C.  Pace et al 2008).
Dissipation range spectra often exponential (P. Terry et al 2009).
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BOUT++ Turbulence has Correlation Size A Few Times Larger 
than Experimental Turbulence

Spatial Cross-Correlation

Fixed Probe
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Grid Convergence Study: Finite Difference Schemes Have 
Grid Spacing Dependent Errors
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FD Error

Dominant error in simulations due to first order upwind advection operator:
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Diffusive error proportional 
to grid spacing

• Need fine grid spacing and/or higher order finite difference schemes to reduce the error and 
get better grid convergence.
• Problems are computational expenses and that the diffusive damping helps simulations 
saturate
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Artificial Diffusive Operators Mimic Numerical Diffusion 
Errors in How They Change the Spectra

¹r2
?NArtificial diffusion added to density equation:

Artificial viscosity added to vorticity equation: ¹r2
?$
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Better Grid Convergence is Achieved Using High Order 
Arakawa Advection Scheme

• Higher diffusion coefficient to get same saturation level
• Larger divergence at high k due to high order FD scheme error
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Boundary Conditions Important in Setting Flows and 
Temperature Profiles in LAPD

LAPD Boundary Schematic

Experimental Radial Profiles

Cathode Edge
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Extensions of the Model

2. Heat transport equation

@Te
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= ¡vE ¢rTe ¡ vkerkTe + 0:712
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1.    Axial Plate Sheath Boundary Conditions for Conducting Walls
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3. Equilibrium electron 
temperature profile
from experiment

Profile used in 
simulations

Source used to subtract m=0 
fluctuation component 
(same as density)
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Sheath Implementation Tested in BOUT++ with the 
Conducting Wall Mode Instability1

@$
@t

= rkjk

@vke

@t
= rkÁ¡ 0:51¹eivke

@Te

@t
= ¡VE ¢rTe

Three-Field Model2 Linearized Parallel Sheath Boundary Conditions

jk =§eNoCs(¤1Á+¤2Te)

Theoretical Values: ¤1 = 1;¤2 = log

r
4¼me

mi

• Linear dispersion relation is a transcendental equation that can be solved numerically

• Infinite number of even and odd modes

• Python code numerically solves the transcendental equations for fastest growing even and 
odd modes

1 Berk et. al. 1991
2 Umansky, notes
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Simple Test Case Comparison Between Numerical Dispersion 
Relation Solver and BOUT++

Slab geometry, flat density profile, exponential temperature profile

¤1 = 0;¤2 = 1
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Temperature Fluctuations and Sheath Boundaries Lead to 
Higher Growth Rates for Linear Drift Waves with LAPD 

Parameters and Profiles 
• LAPD profiles and geometry. 
No potential profile.

• Four field linearized model 
with density and electron 
temperature gradient driven 
drift waves for green and red 
data. 

• Three field model for blue data

• Lines show solutions using 1D 
radial eigenvalue solver program 
(1Eigsolver)

• Sheath problem is necessarily 
2D so neither analytic nor 
eigsolver solution possible.

1 Popovich and Friedman
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Conclusions, Works in Progress, and Future Work

• BOUT++ is a highly developed framework that allows for fairly easy coding of fluid models with 
the ability to add complex features.

• Linear machines like LAPD are ideal for use of fluid models.

• A large ongoing and relatively successful effort to validate a fluid model of LAPD turbulence 
has been conducted using BOUT and BOUT++.

• Advanced analysis of the simulation turbulence has been done and is still in progress and a 
few papers will be published soon.

• Energy dynamics
• The role of stable eigenmode branches
• Blobs, filaments, and transport

• Future additions to the model include realistic axial boundary conditions, more fields, and 
possibly an equilibrium radial electric field. Start with a reduced model and add as needed.

• Desirable to compare a gyrofluid model to the results of the fluid model. Clarify the 
importance of kinetic effects in LAPD.


